正在播放一区二区_日本不卡视频_成人福利视频网站_中国av在线免费观看_亚洲小视频在线观看_久久人爽爽人爽爽

必修二數學知識點總結(精選合集6篇)

必修二數學知識點總結:

1. 理解向量的概念,掌握向量加、減法的運算和數乘(數量積)的運算及其幾何意義。
2. 掌握平面向量的數量積及其運算。
3. 理解直線的方向向量和與向量垂直的直線斜率的關系。
4. 理解平面的概念,了解確定平面的基本條件,即不共線三點確定一個平面。
5. 掌握平面和平面垂直的判定定理和平面與平面平行的判定定理。
6. 理解二面角和多面體的結構特征。

學習數學需要理解和應用,只有通過練習才能鞏固所學知識。建議同學們在做題時,對每個知識點進行深入分析和思考,加強練習,以提高自己的數學水平。

必修二數學知識點總結(精選合集6篇)

必修二數學知識點總結1

一、平面的基本性質與推論

1、平面的基本性質:

公理1如果一條直線的兩點在一個平面內,那么這條直線在這個平面內;

公理2過不在一條直線上的三點,有且只有一個平面;

公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

2、空間點、直線、平面之間的位置關系:

直線與直線-平行、相交、異面;

直線與平面-平行、相交、直線屬于該平面(線在面內,最易忽視);

平面與平面-平行、相交。

3、異面直線:

平面外一點A與平面一點B的連線和平面內不經過點B的直線是異面直線(判定);

所成的角范圍(0,90】度(平移法,作平行線相交得到夾角或其補角);

兩條直線不是異面直線,則兩條直線平行或相交(反證);

異面直線不同在任何一個平面內。

求異面直線所成的角:平移法,把異面問題轉化為相交直線的夾角

二、空間中的平行關系

1、直線與平面平行(核心)

定義:直線和平面沒有公共點

判定:不在一個平面內的一條直線和平面內的一條直線平行,則該直線平行于此平面(由線線平行得出)

性質:一條直線和一個平面平行,經過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

2、平面與平面平行

定義:兩個平面沒有公共點

判定:一個平面內有兩條相交直線平行于另一個平面,則這兩個平面平行

性質:兩個平面平行,則其中一個平面內的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

三、空間中的垂直關系

1、直線與平面垂直

定義:直線與平面內任意一條直線都垂直

判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直

性質:垂直于同一直線的兩平面平行

推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

直線和平面所成的角:【0,90】度,平面內的一條斜線和它在平面內的射影說成的銳角,特別規定垂直90度,在平面內或者平行0度

2、平面與平面垂直

定義:兩個平面所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內分別作垂直于棱的兩條射線所成的角)

判定:一個平面過另一個平面的垂線,則這兩個平面垂直

性質:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直

必修二數學知識點總結2

柱、錐、臺、球的結構特征幾何體與體積

(1)棱柱:

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.

(2)棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

(3)棱臺:

幾何特征:上下底面是相似的平行多邊形側面是梯形側棱交于原棱錐的頂點

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成

幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側面展開圖是一個矩形.

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成

幾何特征:底面是一個圓;母線交于圓錐的頂點;側面展開圖是一個扇形.

(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成

幾何特征:上下底面是兩個圓;側面母線交于原圓錐的頂點;側面展開圖是一個弓形.

(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑.

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、

俯視圖(從上向下)

注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度.

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:原來與x軸平行的線段仍然與x平行且長度不變;

原來與y軸平行的線段仍然與y平行,長度為原來的一半.

4、柱體、錐體、臺體的表面積與體積

(1)幾何體的表面積為幾何體各個面的面積的和.

(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

(3)柱體、錐體、臺體的體積公式

高中數學必修二知識點總結:直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

當時,;當時,;當時,不存在.

過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.

(3)直線方程

點斜式:直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.

當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1.

斜截式:,直線斜率為k,直線在y軸上的截距為b

兩點式:()直線兩點,

截矩式:

其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

一般式:(A,B不全為0)

注意:各式的適用范圍特殊的方程如:

(4)平行于x軸的直線:(b為常數);平行于y軸的直線:(a為常數);

(5)直線系方程:即具有某一共同性質的直線

(一)平行直線系

平行于已知直線(是不全為0的常數)的直線系:(C為常數)

(二)垂直直線系

垂直于已知直線(是不全為0的常數)的直線系:(C為常數)

(三)過定點的直線系

()斜率為k的直線系:,直線過定點;

()過兩條直線,的交點的直線系方程為

(為參數),其中直線不在直線系中.

(6)兩直線平行與垂直

注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

(7)兩條直線的交點

相交

交點坐標即方程組的一組解.

方程組無解;方程組有無數解與重合

(8)兩點間距離公式:設是平面直角坐標系中的兩個點

(9)點到直線距離公式:一點到直線的距離

(10)兩平行直線距離公式

在任一直線上任取一點,再轉化為點到直線的距離進行求解。

必修二數學知識點總結3

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°)。(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

⑶臺體:①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S=;②體積:V=

4、位置關系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線。

5、求角:(步驟:Ⅰ、找或作角;Ⅱ、求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形。

⑵直線與平面所成的角:直線與射影所成的角。

必修二數學知識點總結4

一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。

簡單隨機抽樣的特點:

(1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為;在整個抽樣過程中各個個體被抽到的概率為

(2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;

(3)簡單隨機抽樣方法,體現了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎.

(4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣

簡單抽樣常用方法:

(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數不多時優點:抽簽法簡便易行,當總體的個體數不太多時適宜采用抽簽法.(2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數字;第三步,獲取樣本號碼概率:

相關高中數學知識點:系統抽樣

系統抽樣的概念:

當整體中個體數較多時,將整體均分為幾個部分,然后按一定的規則,從每一個部分抽取1個個體而得到所需要的樣本的方法叫系統抽樣。

系統抽樣的步驟:

(1)采用隨機方式將總體中的個體編號;

(2)將整個編號進行均勻分段在確定相鄰間隔k后,若不能均勻分段,即

=k不是整數時,可采用隨機方法從總體中剔除一些個體,使總體中剩余的個體數N′滿足是整數;

(3)在第一段中采用簡單隨機抽樣方法確定第一個被抽得的個體編號l;

(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個體的編號,從而得到整個樣本。

相關高中數學知識點:分層抽樣

分層抽樣:

當已知總體由差異明顯的幾部分組成時,常將總體分成幾部分,然后按照各部分所占的比例進行抽樣,這種抽樣叫做分層抽樣,其所分成的各個部分叫做層。

利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進行抽取。

不放回抽樣和放回抽樣:

在抽樣中,如果每次抽出個體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個體后再將它放回總體,稱這樣的抽樣為放回抽樣.

隨機抽樣、系統抽樣、分層抽樣都是不放回抽樣

分層抽樣的特點:

(1)分層抽樣適用于差異明顯的幾部分組成的情況;

(2)在每一層進行抽樣時,在采用簡單隨機抽樣或系統抽樣;

(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;

(4)分層抽樣也是等概率抽樣,而且在每層抽樣時,可以根據具體情況采用不同的抽樣方法,因此應用較為廣泛。

必修二數學知識點總結5

第一章:三角函數。考試必考題。誘導公式和基本三角函數圖像的一些性質只要記住會畫圖就行,難度在于三角函數形函數的振幅、頻率、周期、相位、初相,及根據最值計算A、B的值和周期,及等變化時圖像及性質的變化,這一知識點內容較多,需要多花時間,首先要記憶,其次要多做題強化練習,只要能踏踏實實去做,也不難掌握,畢竟不存在理解上的難度。

第二章:平面向量。個人覺得這一章難度較大,這也是我掌握最差的一章。向量的運算性質及三角形法則平行四邊形法則難度都不大,只要在計算的時候記住要同起點的向量。向量共線和垂直的數學表達,這是計算當中經常要用的公式。向量的共線定理、基本定理、數量積公式。難點在于分點坐標公式,首先要準確記憶。向量在考試過程一般不會單獨出現,常常是作為解題要用的工具出現,用向量時要首先找出合適的向量,個人認為這個比較難,常常找不對。有同樣情況的同學建議多看有關題的圖形。

第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫之后貼在桌子上,天天都要看。而且的三角函數變換都有一定的規律,記憶的時候可以結合起來去記。除此之外,就是多練習。要從多練習中找到變換的規律,比如一般都要化等等。這一章也是考試必考,所以一定要重點掌握。

必修二數學知識點總結6

1.在中學我們只研直圓柱、直圓錐和直圓臺。所以對圓柱、圓錐、圓臺的旋轉定義、實際上是直圓柱、直圓錐、直圓臺的定義。

這樣定義直觀形象,便于理解,而且對它們的性質也易推導。

對于球的.定義中,要注意區分球和球面的概念,球是實心的。

等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區分。

2.圓柱、圓錐、圓和球的性質

(1)圓柱的性質,要強調兩點:一是連心線垂直圓柱的底面;二是三個截面的性質——平行于底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行于軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。

(2)圓錐的性質,要強調三點

①平行于底面的截面圓的性質:

截面圓面積和底面圓面積的比等于從頂點到截面和從頂點到底面距離的平方比。

②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:

易知,截面三角形的頂角不大于軸截面的頂角(如圖10-20),事實上,由BC≥AB,VC=VB=VA可得∠B≤BVC.

由于截面三角形的頂角不大于軸截面的頂角。

所以,當軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有

當軸截面的頂角θ>90°時,軸截面的面積卻不是的,這是因為,若90°≤α<θ<180°時,1≥sinα>sinθ>0.

③圓錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關系式

l2=h2+R2

(3)圓臺的性質,都是從“圓臺為截頭圓錐”這個事實推得的,高考,但仍要強調下面幾點:

①圓臺的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

②平行于底面的截面若將圓臺的高分成距上、下兩底為兩段的截面面積為S,則

其中S1和S2分別為上、下底面面積。

的截面性質的推廣。

③圓臺的母線l,高h和上、下兩底圓的半徑r、R,組成一個直角梯形,且有

l2=h2+(R-r)2

圓臺的有關計算問題,常歸結為解這個直角梯形。

(4)球的性質,著重掌握其截面的性質。

①用任意平面截球所得的截面是一個圓面,球心和截面圓圓心的連線與這個截面垂直。

②如果用R和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則

R2=r2+d2

即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。

3.圓柱、圓錐、圓臺和球的表面積

(1)圓柱、圓錐、圓臺和多面體一樣都是可以平面展開的。

①圓柱、圓錐、圓臺的側面展開圖,是求其側面積的基本依據。

圓柱的側面展開圖,是由底面圖的周長和母線長組成的一個矩形。

②圓錐和側面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為

③圓臺的側面展開圖是一個由兩條母線長和上、下底面周長組成的扇環,其扇環的圓心角為

這個公式有利于空間幾何體和其側面展開圖的互化

顯然,當r=0時,這個公式就是圓錐側面展開圖扇形的圓心角公式,所以,圓錐側面展開圖扇形的圓心角公式是圓臺相關角的特例。

(2)圓柱、圓錐和圓臺的側面公式為

S側=π(r+R)l

當r=R時,S側=2πRl,即圓柱的側面積公式。

當r=0時,S側=rRl,即圓錐的面積公式。

要重視,側面積間的這種關系。

(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、臺的方法完全不同。

推導出來,要用“微積分”等高等數學的知識,課本上不能算是一種證明。

求不規則圓形的度量屬性的常用方法是“細分——求和——取極限”,這種方法,在學完“微積分”的相關內容后,不證自明,這里從略。

4.畫圓柱、圓錐、圓臺和球的直觀圖的方法——正等測

(1)正等測畫直觀圖的要求:

①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

②在投影圖上取線段長度的方法是:在三軸上或平行于三軸的線段都取實長。

這里與斜二測畫直觀圖的方法不同,要注意它們的區別。

(2)正等測圓柱、圓錐、圓臺的直觀圖的區別主要是水平放置的平面圖形。

用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實長。

5.關于幾何體表面內兩點間的最短距離問題

柱、錐、臺的表面都可以平面展開,這些幾何體表面內兩點間最短距離,就是其平面內展開圖內兩點間的線段長。

由于球面不能平面展開,所以求球面內兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。

感謝您花時間閱讀本文。如果您覺得必修二數學知識點總結這篇文章對您有所幫助,我們非常希望您能夠將其分享給更多的人。最后我們將繼續努力,為您提供更多有價值的內容。祝您生活愉快!

本文由用戶Nancy Baker分享,如有侵權請聯系。如若轉載,請注明出處:http://www.qingqu1.cn/64476.html

(0)

相關推薦

發表回復

您的郵箱地址不會被公開。 必填項已用 * 標注

主站蜘蛛池模板: 欧美成人一区二免费视频软件 | 国产精品久久久久久久9999 | 欧美成人激情 | 91最新网址| 国产免费av网站 | 在线免费看黄视频 | 国产精品日韩高清伦字幕搜索 | 欧美性猛交xxxx黑人猛交 | 欧美日韩国产在线观看 | 日韩精品在线一区 | 国产a自拍 | 九色网址 | 一区二区在线电影 | 色在线免费| 久久久成人精品 | 精品一区二区在线观看 | 一区二区三区亚洲 | 99热在线精品免费 | 日本免费高清视频 | 精品国产91| av资源中文在线 | 日韩影片在线观看 | 中文字幕亚洲欧美日韩在线不卡 | 操操操操操操 | 免费欧美一级 | 午夜国产精品成人 | 成人a在线 | 国产中文视频 | yellow在线视频免费观看 | 午夜视频在线免费观看 | 日本精品一区二区三区在线观看视频 | 日韩精品视频在线播放 | 亚洲a人| 欧美一级二级三级视频 | 综合自拍偷拍 | 色婷婷国产精品综合在线观看 | 亚洲视频综合 | 国产中文字幕一区 | 久久亚洲国产 | 狠狠影院 | 爱操在线 |