正在播放一区二区_日本不卡视频_成人福利视频网站_中国av在线免费观看_亚洲小视频在线观看_久久人爽爽人爽爽

高一數(shù)學(xué)教案全套 高一數(shù)學(xué)教案(優(yōu)秀8篇)

高一數(shù)學(xué)教案(優(yōu)秀8篇)

高一數(shù)學(xué)教案 篇一

【學(xué)習(xí)目標(biāo)】

1、感受數(shù)學(xué)探索的成功感,提高學(xué)習(xí)數(shù)學(xué)的興趣;

2、經(jīng)歷誘導(dǎo)公式的探索過程,感悟由未知到已知、復(fù)雜到簡單的數(shù)學(xué)轉(zhuǎn)化思想。

3、能借助單位圓的對稱性理解記憶誘導(dǎo)公式,能用誘導(dǎo)公式進(jìn)行簡單應(yīng)用。

【學(xué)習(xí)重點(diǎn)】三角函數(shù)的誘導(dǎo)公式的理解與應(yīng)用

【學(xué)習(xí)難點(diǎn)】誘導(dǎo)公式的推導(dǎo)及靈活運(yùn)用

【知識(shí)鏈接】(1)單位圓中任意角α的正弦、余弦的定義

(2)對稱性:已知點(diǎn)P(x,),那么,點(diǎn)P關(guān)于x軸、軸、原點(diǎn)對稱的點(diǎn)坐標(biāo)

【學(xué)習(xí)過程】

一、預(yù)習(xí)自學(xué)

閱讀書第19頁——20頁內(nèi)容,通過對-α、π-α、π+α、2π-α、α的終邊與單位圓的交點(diǎn)的對稱性規(guī)律的探究,結(jié)合單位圓中任意角的正弦、余弦的定義,從中自我發(fā)現(xiàn)歸納出三角函數(shù)的誘導(dǎo)公式,并寫出下列關(guān)系:

(1)- 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式與 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系

(2)角407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系

(3)角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系

(4)角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系

二、合作探究

探究1、求下列函數(shù)值,思考你用到了哪些三角函數(shù)誘導(dǎo)公式?試總結(jié)一下求任意角的三角函數(shù)值的過程與方法。

(1) 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 (2) 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 (3)sin(-1650°);

探究2: 化簡: 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式(先逐個(gè)化簡)

探究3、利用單位圓求滿足 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 的角的集合。

三、學(xué)習(xí)小結(jié)

(1)你能說說化任意角的正(余)弦函數(shù)為銳角正(余)弦函數(shù)的一般思路嗎?

(2)本節(jié)學(xué)習(xí)涉及到什么數(shù)學(xué)思想方法?

(3)我的疑惑有

【達(dá)標(biāo)檢測】

1、在單位圓中,角α的終邊與單位圓交于點(diǎn)P(- 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 , 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 ),

則sin(-α)= ;cs(α±π)= ;cs(π-α)=

2.求下列函數(shù)值:

(1)sin( 407[導(dǎo)學(xué)案]4.4單位圓的對稱性與誘導(dǎo)公式 )= ; (2) cs210&rd;=

3、若csα=-1/2,則α的集合S=

高一數(shù)學(xué)集合教案 篇二

1.1.2集合的表示方法

一、教學(xué)目標(biāo):

1、集合的兩種表示方法(列舉法和特征性質(zhì)描述法)。

2、能選擇適當(dāng)?shù)姆椒ㄕ_的表示一個(gè)集合。

重點(diǎn):集合的表示方法。

難點(diǎn):集合的特征性質(zhì)的概念,以及運(yùn)用特征性質(zhì)描述法表示集合。

二、復(fù)習(xí)回顧:

1、集合中元素的特性:______________________________________.

2、常見的數(shù)集的簡寫符號(hào):自然數(shù)集 整數(shù)集 正整數(shù)集

有理數(shù)集 實(shí)數(shù)集

三、知識(shí)預(yù)習(xí):

1. ___________________________________________________________________________ ____________________________________________________________________叫做列舉法;

2. _______________________ ____________________________________________________叫做集合A的一個(gè)特征性質(zhì)。 ___________________________________________________________________________________

叫做特征性質(zhì)描述法,簡稱描述法。

說明:概念的理解和注意問題

1. 用列舉法表示集合時(shí)應(yīng)注意以下5點(diǎn):

(1) 元素間用分隔號(hào),

(2) 元素不重復(fù);

(3) 不考慮元素順序;

(4) 對于含有較多元素的集合,如果構(gòu)成該集合的元素有明顯規(guī)律,可用列舉法,但必須把元素間的規(guī)律顯示清楚后方能用省略號(hào)。

(5) 無限集有時(shí)也可用列舉法表示。

2. 用特征性質(zhì)描述法表示集合時(shí)應(yīng)注意以下6點(diǎn);

(1) 寫清楚該集合中元素的代號(hào)(字母或用字母表達(dá)的元素符號(hào));

(2) 說明該集合中元素的性質(zhì);

(3) 不能出現(xiàn)未被說明的字母;

(4) 多層描述時(shí),應(yīng)當(dāng)準(zhǔn)確使用且和或

(5) 所有描述的內(nèi)容都要寫在集合符號(hào)內(nèi);

(6) 用于描述的’語句力求簡明,準(zhǔn)確。

四、典例分析

題型一 用列舉法表示下列集合

例1 用列舉法表示下列集合

(1)A={x N|0

變式訓(xùn)練:○1課本7頁練習(xí)A第1題。 ○2課本9頁習(xí)題A第3題。

題型二 用描述法表示集合

例2 用描述法表示下列集合

(1){-1,1} (2)大于3的全體偶數(shù)構(gòu)成的集合 (3)在平面 內(nèi),線段AB的垂直平分線

變式訓(xùn)練:課本8頁練習(xí)A第2題、練習(xí)B第2題、9頁習(xí)題A第4題。

題型三 集合表示方法的靈活運(yùn)用

例3 分別判斷下列各組集合是否為同一個(gè)集合:

(1)A={x|x+32} B={y|y+32}

(2) A={(1,2)} B={1,2}

(3) M={(x,y)|y= +1} N={y| y= +1}

變式訓(xùn)練:1、集合A={x|y= ,x Z,y Z},則集合A的元素個(gè)數(shù)為( )

A 4 B 5 C 10 D 12

2、課本8頁練習(xí)B第1題、習(xí)題A第1題

例4 已知集合A={x|k -8x+16=0}只有一個(gè)元素,試求實(shí)數(shù)k的值,并用列舉法表示集合A.

作業(yè):課本第9頁A組第2題、B組第1、2題。

限時(shí)訓(xùn)練

1. 選擇

(1)集合 的另一種表示法是( B )

A. B. C. D.

(2) 由大于-3小于11的偶數(shù)所組成的集合是( D )

A. B.

C. D.

(3) 方程組 的解集是( D )

A. (5, 4) B. C. (-5, 4) D. (5,-4)

(4)集合M= (x,y)| xy0, x , y 是( D )

A. 第一象限內(nèi)的點(diǎn)集 B. 第三象限內(nèi)的點(diǎn)集

C. 第四象限內(nèi)的點(diǎn)集 D. 第二、四象限內(nèi)的點(diǎn)集

(5)設(shè)a, b , 集合 1,a+b, a = 0, , b , 則b-a等于( C )

A. 1 B. -1 C. 2 D. -2

2. 填空

(1)已知集合A= 2, 4, x2-x , 若6 ,則x=___-2或3______.

(2)由平面直角坐標(biāo)系內(nèi)第二象限的點(diǎn)組成的集合為__ __.

(3)下面幾種表示法:○1 ;○2 ; ○3 ;

○4(-1,2);○5 ;○6 . 能正確表示方程組

的解集的是__○2__○5_______.

(4) 用列舉法表示下列集合:

A= =___{0,1,2}________________________;

B= =___{-2,-1,0,1,2}________________________;

C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.

(5) 已知A= , B= , 則集合B=__{0,1,2}________.

3. 已知集合A= , 且-3 ,求實(shí)數(shù)a. (a= )

4. 已知集合A= .

(1) 若A中只有一個(gè)元素,求a的值;(a=0或a=1)

(2)若A中至少有一個(gè)元素,求a的取值范圍;(a1)

(3)若A中至多有一個(gè)元素,求a的取值范圍。(a=0或a1)

高一數(shù)學(xué)集合教案 篇三

教學(xué)目的:

(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法

(2)使學(xué)生初步了解“屬于”關(guān)系的意義

(3)使學(xué)生初步了解有限集、無限集、空集的意義

教學(xué)重點(diǎn):

集合的基本概念及表示方法

教學(xué)難點(diǎn):

運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示

一些簡單的集合

授課類型:

新授課

課時(shí)安排:

1課時(shí)

教具:

多媒體、實(shí)物投影儀

內(nèi)容分析:

1、集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)

把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯

本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對概念有一個(gè)初步認(rèn)識(shí)教科書給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學(xué)過程:

一、復(fù)習(xí)引入:

1、簡介數(shù)集的發(fā)展,復(fù)習(xí)公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2、教材中的章頭引言;

3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

4、“物以類聚”,“人以群分”;

5、教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號(hào)?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關(guān)概念:

由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的我們說,每一組對象的全體形成一個(gè)集合,或者說,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集。集合中的每個(gè)對象叫做這個(gè)集合的元素。

定義:一般地,某些指定的對象集在一起就成為一個(gè)集合。

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡稱集)

(2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素

2、常用數(shù)集及記法

(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合記作N,

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集記作Nx或N+

(3)整數(shù)集:全體整數(shù)的集合記作Z,

(4)有理數(shù)集:全體有理數(shù)的集合記作Q,

(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合記作R

注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

(2)非負(fù)整數(shù)集內(nèi)排除0的集記作Nx或N+Q、Z、R等其它

數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0

的集,表示成Zx

3、元素對于集合的隸屬關(guān)系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

4、集合中元素的特性

(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復(fù)

(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過來寫

三、練習(xí)題:

1、教材P5練習(xí)1、2

2、下列各組對象能確定一個(gè)集合嗎?

(1)所有很大的實(shí)數(shù)(不確定)

(2)好心的人(不確定)

(3)1,2,2,3,4,5.(有重復(fù))

3、設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是_-2,0,2__

4、由實(shí)數(shù)x,-x,|x|,所組成的集合,最多含(A)

(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

5、設(shè)集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數(shù),求證:

(1)當(dāng)x∈N時(shí),x∈G;

(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

則x=x+0x=a+b∈G,即x∈G

證明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整數(shù),

∴=不一定屬于集合G

四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)

2、集合元素的性質(zhì):確定性,互異性,無序性

3、常用數(shù)集的定義及記法

五、課后作業(yè):

六、板書設(shè)計(jì)(略)

高中數(shù)學(xué)考試的技巧

一、整體把握、抓大放小

拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對于能夠很快做出來的題目,一定要拿到應(yīng)得的分?jǐn)?shù)。

二、確定每部分的答題時(shí)間

1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒有做出來的題目。對于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。

2、考試時(shí)花了過多的時(shí)間才做出來的題目。對于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來。

三、碰到難題時(shí)

1、你可以先用“直覺”最快的找到解題思路;

2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;

3、如果這樣也不行,你可以猜測一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。

4、對于花了一定時(shí)間仍然不能做出來的題目,要勇于放棄。

四、卷面整潔、字跡清楚、注意小節(jié)

做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。

高中數(shù)學(xué)有效的學(xué)習(xí)方法

一、課后及時(shí)回憶

如果等到把課堂內(nèi)容遺忘得差不多時(shí)才復(fù)習(xí),就幾乎等于重新學(xué)習(xí),所以課堂學(xué)習(xí)的新知識(shí)必須及時(shí)復(fù)習(xí)。

可以一個(gè)人單獨(dú)回憶,也可以幾個(gè)人在一起互相啟發(fā),補(bǔ)充回憶。一般按照教師板書的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結(jié)構(gòu)進(jìn)行,從課題到重點(diǎn)內(nèi)容,再到例題的每部分的細(xì)節(jié),循序漸進(jìn)地進(jìn)行復(fù)習(xí)。在復(fù)習(xí)過程中要不失時(shí)機(jī)整理筆記,因?yàn)檎砉P記也是一種有效的復(fù)習(xí)方法。

二、定期重復(fù)鞏固

即使是復(fù)習(xí)過的內(nèi)容仍須定期鞏固,但是復(fù)習(xí)的次數(shù)應(yīng)隨時(shí)間的增長而逐步減小,間隔也可以逐漸拉長。可以當(dāng)天鞏固新知識(shí),每周進(jìn)行周小結(jié),每月進(jìn)行階段性總結(jié),期中、期末進(jìn)行全面系統(tǒng)的學(xué)期復(fù)習(xí)。從內(nèi)容上看,每課知識(shí)即時(shí)回顧,每單元進(jìn)行知識(shí)梳理,每章節(jié)進(jìn)行知識(shí)歸納總結(jié),必須把相關(guān)知識(shí)串聯(lián)在一起,形成知識(shí)網(wǎng)絡(luò),達(dá)到對知識(shí)和方法的整體把握。

三、科學(xué)合理安排

復(fù)習(xí)一般可以分為集中復(fù)習(xí)和分散復(fù)習(xí)。實(shí)驗(yàn)證明,分散復(fù)習(xí)的效果優(yōu)于集中復(fù)習(xí),特殊情況除外。分散復(fù)習(xí),可以把需要識(shí)記的材料適當(dāng)分類,并且與其他的學(xué)習(xí)或娛樂或休息交替進(jìn)行,不至于單調(diào)使用某種思維方式,形成疲勞。分散復(fù)習(xí)也應(yīng)結(jié)合各自認(rèn)知水平,以及識(shí)記素材的特點(diǎn),把握重復(fù)次數(shù)與間隔時(shí)間,并非間隔時(shí)間越長越好,而要適合自己的復(fù)習(xí)規(guī)律。

高一數(shù)學(xué)集合教案 篇四

教學(xué)目的:

(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡單集合的并集與交集;

(2)理解在給定集合中一個(gè)子集的補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;

(3)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對理解抽象概念的作用。

教學(xué)重點(diǎn):

集合的交集與并集、補(bǔ)集的概念;

教學(xué)難點(diǎn):

集合的交集與并集、補(bǔ)集“是什么”,“為什么”,“怎樣做”;

【知識(shí)點(diǎn)】

1、并集

一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)

記作:A∪B讀作:“A并B”

即:A∪B={x|x∈A,或x∈B}

Venn圖表示:

第4 / 7頁

A與B的所有元素來表示。 A與B的交集。

2、交集

一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。

記作:A∩B讀作:“A交B”

即:A∩B={x|∈A,且x∈B}

交集的Venn圖表示

說明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。

拓展:求下列各圖中集合A與B的并集與交集

A

說明:當(dāng)兩個(gè)集合沒有公共元素時(shí),兩個(gè)集合的交集是空集,不能說兩個(gè)集合沒有交集

3、補(bǔ)集

全集:一般地,如果一個(gè)集合含有我們所研究問題中所涉及的所有元素,那么就稱這個(gè)集合為全集(Universe),通常記作U。

補(bǔ)集:對于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補(bǔ)集(complementary set),簡稱為集合A的補(bǔ)集,

記作:CUA

即:CUA={x|x∈U且x∈A}

第5 / 7頁

補(bǔ)集的Venn圖表示

說明:補(bǔ)集的概念必須要有全集的限制

4、求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分

交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法。

5、集合基本運(yùn)算的一些結(jié)論:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,則A?B,反之也成立

若A∪B=B,則A?B,反之也成立

若x∈(A∩B),則x∈A且x∈B

若x∈(A∪B),則x∈A,或x∈B

¤例題精講:

【例1】設(shè)集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在數(shù)軸上表示出集合A、B。

【例2】設(shè)A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C)。

【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求實(shí)數(shù)m的取值范圍。

XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關(guān)系。

高一數(shù)學(xué)教案 篇五

教學(xué)目標(biāo)

(1)正確理解充分條件、必要條件和充要條件的概念;

(2)能正確判斷是充分條件、必要條件還是充要條件;

(3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

(4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

教學(xué)建議

(一)教材分析

1.知識(shí)結(jié)構(gòu)

首先給出推斷符號(hào)“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識(shí).

2.重點(diǎn)難點(diǎn)分析

本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.

(1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.

(2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:

①首先分清條件是什么,結(jié)論是什么;

②然后嘗試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說明其不成立;

③最后再指出條件是結(jié)論的什么條件.

(3)在討論條件和條件的關(guān)系時(shí),要注意:

①若,但,則是的充分但不必要條件;

②若,但,則是的必要但不充分條件;

③若,且,則是的充要條件;

④若,且,則是的充要條件;

⑤若,且,則是的既不充分也不必要條件.

(4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識(shí),有助于充要條件的理解和判斷.

①若,則是的充分條件;

顯然,要使元素,只需就夠了.類似地還有:

②若,則是的必要條件;

③若,則是的充要條件;

④若,且,則是的既不必要也不充分條件.

(5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.

(二)教法建議

1.學(xué)習(xí)充分條件、必要條件和充要條件知識(shí),要注意與前面有關(guān)邏輯初步知識(shí)內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡單命題,也可以是不能判斷真假的語句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.

2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會(huì)概念的本質(zhì)屬性.

3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.

4.教材中對“充分條件”、“必要條件”的定義沒有作過多的解釋說明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來認(rèn)識(shí)“充分條件”的概念,從互為逆否命題的等價(jià)性來引出“必要條件”的概念.

教學(xué)設(shè)計(jì)示例

充要條件

教學(xué)目標(biāo)

(1)正確理解充分條件、必要條件和充要條件的概念;

(2)能正確判斷是充分條件、必要條件還是充要條件;

(3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

(4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

教學(xué)重點(diǎn)難點(diǎn):

關(guān)于充要條件的判斷

教學(xué)用具:

幻燈機(jī)或?qū)嵨锿队皟x

教學(xué)過程設(shè)計(jì)

1.復(fù)習(xí)引入

練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):

(1)若,則;

(2)若,則;

(3)全等三角形的面積相等;

(4)對角線互相垂直的四邊形是菱形;

(5)若,則;

(6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.

(學(xué)生口答,教師板書.)

(1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

置疑:對于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?

答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

對于命題“若,則”,如果由經(jīng)過推理能推出,也就是說,如果成立,那么一定成立.換句話說,只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱條件是成立的充分條件,記作.

2.講授新課

(板書充分條件的定義.)

一般地,如果已知,那么我們就說是成立的充分條件.

提問:請用充分條件來敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.

(學(xué)生口答)

(1)“,”是“”成立的充分條件;

(2)“三角形全等”是“三角形面積相等”成立的充分條件;

(3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.

從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒有,也就沒有,亦即是成立的必須要有的條件,也就是必要條件.

(板書必要條件的定義.)

提出問題:用“充分條件”和“必要條件”來敘述上述6個(gè)命題.

(學(xué)生口答).

(1)因?yàn)?,所以是的充分條件,是的必要條件;

(2)因?yàn)椋允堑谋匾獥l件,是的充分條件;

(3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

(4)因?yàn)椤八倪呅蔚膶蔷€互相垂直”“四邊形是菱形”,所以“四邊形的對角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對角線互相垂直”的充分條件;

(5)因?yàn)?,所以是的必要條件,是的充分條件;

(6)因?yàn)椤胺匠痰挠袃蓚€(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.

總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡稱充要條件,記作.

(板書充要條件的定義.)

3.鞏固新課

例1(用投影儀投影.)

(學(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)

①因?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;

②一定能推出,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;

③、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;

④表示或,所以是成立的必要非充分條件;

⑤由交集的定義可知且是成立的充要條件;

⑥由知且,所以是成立的充分非必要條件;

⑦由知或,所以是,成立的必要非充分條件;

⑧易知“是4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;

(通過對上述問題的交流、思辯,在爭論中得到了正確答案,并加深了對充分條件、必要條件的認(rèn)識(shí).)

例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)

解:由已知得,

所以是的充分條件,或是的必要條件.

4.小結(jié)回授

今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).

課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(上))第35頁練習(xí)l、2;第36頁練習(xí)l、2.

(通過練習(xí),檢查學(xué)生掌握情況,有針對性的進(jìn)行講評(píng).)

5.課外作業(yè):教材第36頁 習(xí)題1.8 1、2、3.

高一數(shù)學(xué)的教案 篇六

教學(xué)目的:要求學(xué)生初步理解集合的概念,理解元素與集合間的關(guān)系,掌握集合的表示法,知道常用數(shù)集及其記法。

教學(xué)重難點(diǎn):

1、元素與集合間的關(guān)系

2、集合的表示法

教學(xué)過程:

一、 集合的概念

實(shí)例引入:

⑴ 1~20以內(nèi)的所有質(zhì)數(shù);

⑵ 我國從1991~20xx的13年內(nèi)所發(fā)射的所有人造衛(wèi)星;

⑶ 金星汽車廠20xx年生產(chǎn)的所有汽車;

⑷ 20xx年1月1日之前與我國建立外交關(guān)系的所有國家;

⑸ 所有的正方形;

⑹ 黃圖盛中學(xué)20xx年9月入學(xué)的高一學(xué)生全體。

結(jié)論:一般地,我們把研究對象統(tǒng)稱為元素;把一些元素組成的總體叫做集合,也簡稱集。

二、 集合元素的特征

(1)確定性:設(shè)A是一個(gè)給定的集合,x是某一個(gè)具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。

(2)互異性:一個(gè)給定集合中的元素,指屬于這個(gè)集合的互不相同的個(gè)體(對象),因此,同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素。

(3)無序性:一般不考慮元素之間的順序,但在表示數(shù)列之類的特殊集合時(shí),通常按照習(xí)慣的由小到大的數(shù)軸順序書寫

練習(xí):判斷下列各組對象能否構(gòu)成一個(gè)集合

⑴ 2,3,4 ⑵ (2,3),(3,4) ⑶ 三角形

⑷ 2,4,6,8,… ⑸ 1,2,(1,2),{1,2}

⑹我國的小河流 ⑺方程x2+4=0的所有實(shí)數(shù)解

⑻好心的人 ⑼著名的數(shù)學(xué)家 ⑽方程x2+2x+1=0的解

三 、 集合相等

構(gòu)成兩個(gè)集合的元素一樣,就稱這兩個(gè)集合相等

四、 集合元素與集合的關(guān)系

集合元素與集合的關(guān)系用“屬于”和“不屬于”表示:

(1)如果a是集合A的元素,就說a屬于A,記作a∈A

(2)如果a不是集合A的元素,就說a不屬于A,記作a∈A

五、常用數(shù)集及其記法

非負(fù)整數(shù)集(或自然數(shù)集),記作N;

除0的非負(fù)整數(shù)集,也稱正整數(shù)集,記作N*或N+;

整數(shù)集,記作Z;

有理數(shù)集,記作Q;

實(shí)數(shù)集,記作R.

練習(xí):(1)已知集合M={a,b,c}中的三個(gè)元素可構(gòu)成某一三角形的三條邊,那么此三角形一定不是( )

A直角三角形 B 銳角三角形 C鈍角三角形 D等腰三角形

(2)說出集合{1,2}與集合{x=1,y=2}的異同點(diǎn)?

六、集合的表示方式

(1)列舉法:把集合中的元素一一列舉出來,寫在大括號(hào)內(nèi);

(2)描述法:用集合所含元素的共同特征表示的方法。(具體方法)

例 1、 用列舉法表示下列集合:

(1)小于10的所有自然數(shù)組成的集合;

(2)方程x2=x的所有實(shí)數(shù)根組成的集合;

(3)由1~20以內(nèi)的所有質(zhì)數(shù)組成。

例 2、 試分別用列舉法和描述法表示下列集合:

(1)由大于10小于20的的所有整數(shù)組成的集合;

(2)方程x2-2=2的所有實(shí)數(shù)根組成的集合。

注意:(1)描述法表示集合應(yīng)注意集合的代表元素

(2)只要不引起誤解集合的代表元素也可省略

七、小結(jié)

集合的概念、表示;集合元素與集合間的關(guān)系;常用數(shù)集的記法。

高一數(shù)學(xué)教學(xué)教案 篇七

一、教學(xué)目標(biāo)

(一)知識(shí)與技能

了解數(shù)軸的概念,能用數(shù)軸上的點(diǎn)準(zhǔn)確地表示有理數(shù)。

(二)過程與方法

通過觀察與實(shí)際操作,理解有理數(shù)與數(shù)軸上的點(diǎn)的對應(yīng)關(guān)系,體會(huì)數(shù)形結(jié)合的思想。

(三)情感、態(tài)度與價(jià)值觀

在數(shù)與形結(jié)合的過程中,體會(huì)數(shù)學(xué)學(xué)習(xí)的樂趣。

二、教學(xué)重難點(diǎn)

(一)教學(xué)重點(diǎn)

數(shù)軸的三要素,用數(shù)軸上的點(diǎn)表示有理數(shù)。

(二)教學(xué)難點(diǎn)

數(shù)形結(jié)合的思想方法。

三、教學(xué)過程

(一)引入新課

提出問題:通過實(shí)例溫度計(jì)上數(shù)字的意義,引出數(shù)學(xué)中也有像溫度計(jì)一樣可以用來表示數(shù)的軸,它就是我們今天學(xué)習(xí)的數(shù)軸。

(二)探索新知

學(xué)生活動(dòng):小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關(guān)系:

提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負(fù)數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

學(xué)生活動(dòng):畫圖表示后提問。

提問2:“0”代表什么?數(shù)的符號(hào)的實(shí)際意義是什么?對照體溫計(jì)進(jìn)行解答。

教師給出定義:在數(shù)學(xué)中,可以用一條直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個(gè)點(diǎn)表示數(shù)0,代表原點(diǎn);通常規(guī)定直線上向右(或上)為正方向,從原點(diǎn)向左(或下)為負(fù)方向;選取合適的長度為單位長度。

提問3:你是如何理解數(shù)軸三要素的?

師生共同總結(jié):“原點(diǎn)”是數(shù)軸的“基準(zhǔn)”,表示0,是表示正數(shù)和負(fù)數(shù)的分界點(diǎn),正方向是人為規(guī)定的,要依據(jù)實(shí)際問題選取合適的單位長度。

(三)課堂練習(xí)

如圖,寫出數(shù)軸上點(diǎn)A,B,C,D,E表示的數(shù)。

(四)小結(jié)作業(yè)

提問:今天有什么收獲?

引導(dǎo)學(xué)生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

高一數(shù)學(xué)教案全集5 篇八

數(shù)學(xué)教案-圓的周長、弧長

圓周長、弧長(一)

教學(xué)目標(biāo) :

1、初步掌握圓周長、弧長公式;

2、通過弧長公式的推導(dǎo),培養(yǎng)學(xué)生探究新問題的能力;

3、調(diào)動(dòng)學(xué)生的積極性,培養(yǎng)學(xué)生的鉆研精神;

4、進(jìn)一步培養(yǎng)學(xué)生從實(shí)際問題中抽象出數(shù)學(xué)模型的能力,綜合運(yùn)用所學(xué)知識(shí)分析問題和解決問題的能力。

教學(xué)重點(diǎn):弧長公式。

教學(xué)難點(diǎn) :正確理解弧長公式。

教學(xué)活動(dòng)設(shè)計(jì):

(一)復(fù)習(xí)(圓周長)

已知⊙O半徑為R,⊙O的周長C是多少?

C=2πR

這里π=3.14159…,這個(gè)無限不循環(huán)的小數(shù)叫做圓周率。

由于生產(chǎn)、生活實(shí)際中常遇到有關(guān)弧的長度計(jì)算,那么怎樣求一段弧的長度呢?

提出新問題:已知⊙O半徑為R,求n°圓心角所對弧長。

(二)探究新問題、歸納結(jié)論

教師組織學(xué)生探討(因?yàn)閱栴}并不難,學(xué)生完全可以自己研究得到公式)。

研究步驟:

(1)圓周長C=2πR;

(2)1°圓心角所對弧長=;

(3)n°圓心角所對的弧長是1°圓心角所對的弧長的n倍;

(4)n°圓心角所對弧長=。

歸納結(jié)論:若設(shè)⊙O半徑為R, n°圓心角所對弧長l,則

(弧長公式)

(三)理解公式、區(qū)分概念

教師引導(dǎo)學(xué)生理解:

(1)在應(yīng)用弧長公式 進(jìn)行計(jì)算時(shí),要注意公式中n的意義。n表示1°圓心角的倍數(shù),它是不帶單位的;

(2)公式可以理解記憶(即按照上面推導(dǎo)過程記憶);

(3)區(qū)分弧、弧的度數(shù)、弧長三概念。度數(shù)相等的弧,弧長不一定相等,弧長相等的。弧也不一定是等孤,而只有在同圓或等圓中,才可能是等弧。

(四)初步應(yīng)用

例1、已知:如圖,圓環(huán)的外圓周長C1=250cm,內(nèi)圓周長C2=150cm,求圓環(huán)的寬度d (精確到1mm)。

分析:(1)圓環(huán)的寬度與同心圓半徑有什么關(guān)系?

(2)已知周長怎樣求半徑?

(學(xué)生獨(dú)立完成)

解:設(shè)外圓的半徑為R1,內(nèi)圓的半徑為R2,則

d= 。

∵ , ,

∴ (cm)

例2,彎制管道時(shí),先按中心線計(jì)算展直長度,再下料,試計(jì)算圖所示管道的展直長度L(單位:mm,精確到1mm)

教師引導(dǎo)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題,滲透數(shù)學(xué)建模思想。

解:由弧長公式,得

(mm)

所要求的展直長度

L (mm)

答:管道的展直長度為2970mm.

課堂練習(xí):P176練習(xí)1、4題。

(五)總結(jié)

知識(shí):圓周長、弧長公式;圓周率概念;

能力:探究問題的方法和能力,弧長公式的記憶方法;初步應(yīng)用弧長公式解決問題。

(六)作業(yè) 教材P176練習(xí)2、3;P186習(xí)題3.

本文由用戶折月煮酒分享,如有侵權(quán)請聯(lián)系。如若轉(zhuǎn)載,請注明出處:http://www.qingqu1.cn/24948.html

(0)

相關(guān)推薦

發(fā)表回復(fù)

您的郵箱地址不會(huì)被公開。 必填項(xiàng)已用 * 標(biāo)注

主站蜘蛛池模板: 国产韩国精品一区二区三区 | 欧洲毛片| 国产亚洲精品精品国产亚洲综合 | 精品视频成人 | 欧美日韩一级二级三级 | 国产专区一区 | 国产激情偷乱视频一区二区三区 | 97久久精品人人做人人爽50路 | 国产高清视频一区 | 一级一毛片 | 国产精品久久久久永久免费观看 | 久久久久久国产免费 | 日韩一区免费在线观看 | 久久久久久极品 | 亚洲精品久久久一区二区三区 | 国产成人久久 | 婷婷精品久久久久久久久久不卡 | 成人亚洲| 日韩精品视频免费在线观看 | 特黄特色的大片观看免费视频 | 久久久国产视频 | 国产一区二区精品在线观看 | 欧美一级一区 | 免费日本视频 | 免费av电影观看 | 亚洲三级成人 | 亚洲一区二区三区中文字幕 | 人人爱人人爽 | 一区免费看 | 丁香五月亚洲综合在线 | 国产成人毛片 | 亚洲成av人片在线观看 | 日韩h视频 | 一级一毛片 | 国产成人精品一区二 | 亚洲成人精品一区 | 成人在线看片 | 国产成人黄色网址 | 国产一区二区三区四区hd | 四虎小视频| 天天干天天操 |