高一數學第一章《集合》教案 篇一
一、教學目標
1.使學生學會借助直觀圖,利用集合的思想方法解決簡單的實際問題。
2.通過活動,使學生掌握解決重合問題的一些基本策略,體驗解決問題策略的多樣性。
3.豐富學生對直觀圖的認識,發展形象思維。
二、教學重點
初步學會利用交集的含義解決簡單的實際問題。
三、教學難點
用圖示的方法感受到交集部分。
四、教具準備
多媒體課件。
五、教學過程
(一)生活導入
1.看電影:兩位媽媽和兩位女兒一同去看電影,可是她們只買了3張票,便順利地進了電影院,這是為什么?(外婆、媽媽、女兒)
2.小明排隊:小明排隊去做操,從前數起小明排第3,從后數起小明排第3,你猜這隊小朋友一共有幾人?
教師引導學生:你能用你喜歡的方法解釋一下嗎?(讓學生用畫圖來表示解釋)
【生板書畫畫】
同學聰明活潑、思維活躍,非常喜歡發言,老師很高興能和你們成為朋友,今天我們就一起上一堂數學活動課—-數學廣角。
(二)溫故知新
1.森林運動會要開始了,我們來看看小動物們組隊參加籃球賽和足球賽的情況。
出示“報名表”:
(1)仔細觀察這個表格,你們能發現哪些數學信息?同桌互相說說。
參加籃球賽的有幾種動物?參加足球賽的呢?
(2)根據這些數學信息,可以提出什么問題?
學生提問:參加籃球賽和參加足球賽的一共有幾種動物?
(3)誰能解決這個問題:17人、16人、15人、14人。
2.現在有★WWW.BAIHUAWEN.CN★幾種不同的答案,那么到底參加籃球賽和參加足球賽的一共有幾種動物?
為了解決這個問題,我們組織一個畫圖大賽,先畫出你喜歡的圖案,將表格中參加籃球賽、足球賽的動物寫在畫好的圖案里。注意:怎樣寫才能使大家在你設計的圖中一眼就能看出哪些是參加籃球賽、哪些是足球賽的,哪些是既參加籃球賽又足球賽的呢?看看哪個小組設計的圖既簡單又科學。
(1)小組合作,設計出多種圖案。
(2)學生上臺展示設計作品,其余同學當小評委。
(3)把展示的作品放在一起,你最喜歡哪一種,為什么?
3.老師也設計了一幅圖案,你們也幫老師評一評好嗎?【課件】
(1)課件出示:籃球賽足球賽
(2)對老師的設計有什么看法嗎?
(3)老師根據你們的建議進行了修改,課件演示兩集合相交的過程。
4.觀察圖,看圖搶答:圖中告訴你什么信息?【課件】
(1)參加籃球賽的有8種。
(2)參加足球賽的有9種。
(3)3種動物是既參加籃球賽又參加足球賽的。
(4)只參加籃球賽的有5種。
(5)只參加足球賽的有6種。
(6)參加籃球賽的和參加足球賽的有14種。列式表示:8+9-3=14(種)
①追問:為什么減去3?
(因為這3種既參加籃球賽又參加足球賽,是重復的,因此要去掉。)
②還可以怎樣解答?說說是怎樣想的?
5+3+6=14(種)
(只參加籃球賽的5人和只參加足球賽的6人與既參加籃球賽又參加足球賽的3人,解決的是問題。)
9-3+8=14(種)
(9-3表示只參加足球賽,再加上參加籃球賽的8人,也可以得到問題。)
教師介紹:這個圖是一個叫韋恩的人創造的。
5.集合圖與表格比較,有什么好處?
從圖中能很清楚地看出重復的部分和其它信息。
(三)鞏固練習
1.同學們都很愛動腦筋,自己設計了解決問題的方法,運用這些數學思想方法可以解決生活中的許多實際問題。
(1)春天到了,陽光明媚,動物王國準備舉行運動會,看哪些動物來參加呢?認識它們嗎?
(2)學生說說動物名稱。
課件出示比賽項目:游泳、飛行。
(3)小動物們可以參加什么項目呢?學生討論、反饋。
(4)原來這些動物有這么多本領,那就請你們來幫小動物報名吧。(把動物序號填在課本上)
(5)匯報:說說哪些動物會飛,能參加飛翔比賽,哪些動物會游泳,能參加游泳比賽。學生邊說邊動畫演示。
點到天鵝、海鷗時,說說它們應參加什么項目,為什么?要放在哪兒?這說明兩個圓圈交叉的中間部分表示什么?
動畫演示:既會飛又會游泳的。
2.動畫6【P110——2】文具店。
同學們幫助小動物們解決了運動會報名的問題,再接受一次挑戰好嗎?
(1)課件出示:文具店。
課件演示:文具店昨天、今天批發文具的情況。
(2)觀察圖,發現了什么?(兩天都批發了鋼筆、尺、練習本)
昨天進的貨有:(略),今天進的貨有(略)
(3)兩天共批發多少種貨?
學生列式:5+5-3=75×2-3=75-3+5=7
(4)結合動畫驗證算式。
3.同學們去春游,帶面包的有26人,帶水果的有23人,既帶面包又帶水果的有48人。參加春游的同學一共有多少人?
(2)根據線段圖學生列式:
26-10+2323-10+2626+23-10
(3)說說怎樣想的?
4.動畫11(集合圖)
(1)看圖說圖意
(2)根據動畫提供的素材學生列式
小結:我們在解決問題時,很好的利用了集合圈或者線段圖幫助我們分析問題。
(四)歸納總結
通過這節課的學習,你有什么收獲?
(五)機動練習
三年級有20個同學參加競賽,其中參加數學競賽的有15人,參加作文競賽的有13人。
(1)既參加數學競賽又參加作文競賽的有幾人?
(2)只參加數學競賽的有幾人?
(3)只參加作文競賽的有幾人?
《集合》教學設計 篇二
教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
課型:新授課
教學目標:
(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學重點:集合的基本概念與表示方法;
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;
教學過程:
一、引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。
閱讀課本P2-P3內容
二、新課教學
(一)集合的有關概念
1.集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
2.一般地,研究對象統稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。
3.思考1:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,對學生的例子予以討論、點評,進而講解下面的問題。
4.關于集合的元素的特征
(1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。
(3)集合相等:構成兩個集合的元素完全一樣
5.元素與集合的關系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A
(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a A(或a A)(舉例)
6.常用數集及其記法
非負整數集(或自然數集),記作N
正整數集,記作N*或N+;
整數集,記作Z
有理數集,記作Q
實數集,記作R
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。
具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考)
強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、歸納小結
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
四、作業布置
書面作業:習題1.1,第1-4題
五、板書設計(略
集合的基本運算教學設計 篇三
一、教學目標
1、知識與技能:
(1)理解并集和交集的含義,會求兩個簡單集合的交集與并集
(2)能夠使用Venn圖表達兩個集合的運算,體會直觀圖像對抽象概念理解的作用
2、過程與方法
(1)進一步體會類比的作用
(2)進一步樹立數形結合的思想
3、情感態度與價值觀
集合作為一種數學語言,讓學生體會數學符號化表示問題的簡潔美。
二、教學重點與難點
教學重點:并集與交集的含義
教學難點:理解并集與交集的概念,符號之間的區別與聯系
三、教學過程
1、創設情境
(1)通過師生互動的形式來創設問題情境,把學生全體作為一個集合,按學科興趣劃分子集,讓他們親身感受,激起他們的學習興趣。
(2)用Venn圖表示(陰影部分)
2、探究新知
(1)通過Venn圖,類比實數的加法運算,引出并集的含義:一般地,由所有屬于集合A或集合B的元素組成的集合,稱為集合A和集合B的并集。
記作:AB,讀作:A并B,其含義用符號表示為:
(2)解剖分析:
1、所有:不能認為AB是由A的所有元素和B的所有元素組成的。集合,即簡單平湊,要滿足集合的互異性,相同的元素即A和B的公共元素只能算作并集中的一個元素
2、或:這一條件,包括下列三種情況:
3、用Venn圖表示AB:
(3)完成教材P8的例4和例5(例4是較為簡單的不用動筆,同學直接口答即可;例5必須動筆計算的,并且還要通過數軸輔助解決,充分體現了數形結合的思想。)
(4)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?(具體畫出A與B相交的Venn圖)
(5)交集的含義:一般地,由屬于集合A和集合B的所有元素組成的集合,稱為A與B的交集,記作:AB,讀作:A交B,其含義用符號表示為
(6)解剖分析:
1、且
2、用Venn圖表示AB:
(7)完成教材P9的例6(口述)
(8)(運用數軸,答案為)
3、鞏固練習
(1)教材P9的例7
(2)教材P11#1#2
4、小結作業:
(1)小結:
1、并集和交集的含義及其符號表示
2、并集與交集的區別(符號等)
(2)作業:
《集合》教學設計 篇四
【教材分析】
重疊問題,學生對它的掌握程度允許有差異性,即學生能掌握到什么程度就到什么程度,所以設計的重疊問題有較簡單的,也有一題多法的,還有課后讓學生繼續研究重疊問題的實踐題目,使每個學生各取所需,各有所得,各有所樂,同時培養學生的創造意識和實踐能力;又由于重疊問題中各部分之間的關系較復雜和抽象,所以設計讓學生在操作學具中領會重疊問題的基本結構,并讓他們借助實物圖等幫助思考。
【學情分析】
學生從一開始學習數學,其實就已經在運用集合的思想方法了。如學習數數時,把2個三角形用一條封閉的曲線圈起來。而以后學習的平面圖形之間的關系都要用到集合的思想。集合是比較系統、抽象的數學思想方法,針對三年級學生的認識水平,應讓學生通過生活中容易理解的題材去初步體會集合思想,為后續學習打下必要的基礎,學生只要能夠用自己的方法解決問題就可以了。
【教學目標】
1.通過觀察、猜測、操作、交流等活動,讓學生在自主探究活動中感知集合圖形的過程,體會集合圖的優點,能用集合圖分析生活中簡單的有重復部分的問題。
2.結合具體情境體會用“韋恩圖”解決有重復部分的問題的價值,理解集合圖中每部分的含義,能解決簡單的有重復部分的問題。
【教學重難點】
重點:理解集合圖的各部分意義,能用集合圖分析生活中簡單的有重復部分的問題。
難點:借助直觀圖解決集合問題。
【教學準備】
課件。
【教學流程】
【情境導入】
1.看電影:兩位媽媽和兩位女兒一同去看電影,可她們只買了3張票,便順利地進了電影院,這是為什么?
2.小明排隊:小明排隊去做操,從前數起小明排第3,從后數起小明排第4,你猜這排小朋友一共有幾人?
師:在生活中這種現象很多,我們經常會遇到,今天我們就一起走進數學廣角,來研究一下這有趣的重復現象。(板書課題)
【探究新知】
1.巧妙設疑,直觀感悟,初步感知重復現象。
(1)調查本班學生參加數學小組、作文小組的情況。
(2)游戲:參加數學小組、作文小組的學生分別站在兩個呼啦圈里。
問題:當有同學既參加數學小組,又參加作文小組時怎么站?
引出問題,學生想辦法解決。
(3)說說呼啦圈里各部分學生所表示的意思。
2.自主繪圖,加深理解。
課件出示:
三(1)班參加數學、作文課外小組的學生情況表
數學
小明丁旭小小小強小兵小東張偉趙軍
作文
小平劉紅小東于麗小史陶偉小小盧強小光
(1)提問:參加數學課外小組的學生有幾人?參加作文課外小組的學生有幾人?參加數學、作文課外小組的學生共有多少人?(學生意見不統一,請學生說說理由)
師:能不能設計一幅圖,把學生的姓名寫在合適的位置,讓我們能一眼就看出參加數學的、參加作文的和兩個項目都參加的有哪些同學呢?
(2)學生小組合作,自主繪圖。教師巡視指導。
3.學生匯報交流,逐步整理出簡潔明了的直觀圖(韋恩圖)。
師:你們知道嗎?這個圖是一個名叫韋恩的科學家創造的。你們剛才也像科學家一樣,把這個圖創造出來了,真了不起!
4.讀圖訓練。教師引導學生用準確的語言表述圖中的各種信息。
5.觀察圖表,算法探究。
師:你們能很快地算出參加數學、作文課外小組的一共有多少人嗎?怎樣列式?
學生回答列式。
6.比較圖與表格,突出韋恩圖的優點,肯定學生的科學創造過程。
【鞏固應用】
教材第106頁練習二十三第1、2、3題。
【課堂小結】
通過今天的學習,你有什么收獲?
【板書設計】
既……又……
8+9-2=15(人)8-2+9=15(人)
9-2+8=15(人)6+7+2=15(人)
《集合》教學設計 篇五
教學內容:
義務教育課程標準實驗教科書小學數學三年級上冊《數學廣角——集合》的內容之一。
教學目標:
1.知識技能目標:在具體的情境中使學生感受集合的思想,感知集合圖的產生過程。
2.數學思考目標:
能借助直觀圖理解題意,同時使學生在解決問題的過程中進一步體會集合的思想,進而形成策略。
3.問題解決目標:
(1).能借助直觀圖,利用集合的思想方法解決簡單的實際問題。
(2).滲透多種方法解決重疊問題的意識。
4.情感態度目標:
(1)培養學生善于觀察、善于思考的能力。
(2)手腦結合、學中激趣,體驗合作樂趣,養成良好習慣。
教學重難點:
1.重點:體會集合思想,利用集合的思想方法解決簡單的重疊問題,并且能用數學語言進行描述。
2.難點:對重疊部分的理解;學會用集合圖來表示事物之間的關系。
教學方法:觀察法、分析法、討論法、操作法、直觀演示法、嘗試法。
學法指導:
1.借圖觀察、分析、討論、交流、操作。
2.大膽嘗試用集合圖來表示事物之間的關系,敢于發表自己的見解。
教具準備:多媒體課件、微視頻、切換筆、可以活動的姓名卡片、直尺、磁鐵、雙面膠、5朵紅花和5個五角星。一張大白紙。
學具準備:常規學具、彩筆、作業本。
教學過程:
一、創設情境,引入新課
1.激情導入,引出例題
師:上課之前,我們一起來欣賞一段視頻,希望同學們認真仔細的觀看,隨后,要回答老師的提問。請看大屏幕……(課件出示奉獻愛心、從小做起的微視頻)
師:看完這段精彩而又讓人感動的畫面后,你有什么想說的嗎?在今后的生活中,如果遇到需要幫助的人或事,你應該怎么做呢?(各抒己見)
師:同學們說的真好!那么,我們荔東小學的同學們也是一方有難、八方支援,非常有愛心。請看大屏幕:這是我校三一班其中一個小組同學向災區“獻愛心”的情況。請同學們認真仔細地觀察這幅表格,你從中都發現了哪些數學信息?
設計意圖:激發學生學習興趣的同時,滲透奉獻愛心、從小做起,一方有難、八方支援的愛心教育。
三一班某小組同學“獻愛心”的情況:
捐款
黃娜
董澤
李彤
張陽
任一
捐物
孟濤
李彤
任一
吳越
張恒
張旭
生1:我發現在這次“獻愛心”活動中,有捐款的,還有捐物的。
生2:我發現捐款的有5人,捐物的有6人。
師:你能提出一個數學問題嗎?
生1:捐款的比捐物的少幾人?
生2:捐物的比捐款的多幾人?
生3:捐款的和捐物的一共多少人?
2.設問質疑,引發沖突
師:參加捐款捐物的一共有多少人?如何解答?
生:11人、10人、9人。
師:這么一個簡單的問題怎么會有這么多不同的答案呢?
生:里面的同學重復了。
師:哪里重復了?(李彤和任一,課件閃動。)
看來這張表格不能讓我們很清楚的看出一共有多少人?那你們能不能想想辦法,在不改變題意的前提下,將表格中的名字作以調整,讓人們很清楚的看出一共有多少人?為此,老師特意為大家準備了一個可以隨意活動姓名的表格。請看黑板:(揭示黑板上的活動表格)
師:下面請同學們分組討論,如何去調整表格?
二、小組交流,探究新知
1.分組討論、調整表格。(各組代表匯報、操作、展示)
方案一:
捐款
李彤
任一
黃娜
董澤
張陽
捐物
李彤
任一
孟濤
吳越
張恒
張旭
師:你覺得你們組這樣擺有什么好處?
生:把重復的兩個同學擺在前面,能引人注意。
師:誰都贊同他們的擺法?請把最熱烈的掌聲送給這個積極探索的小組。你們組的擺法的確不錯,可老師還是覺得,有時還會將總人數看成11人,哪一組還有更好的擺法?
(課堂生成:如果學生沒有想到這個方案,可以啟發:當我們讀書的時候,眼睛從左往右看。那么,想引起人們的注意,應該把既捐款又捐物的人名移到左邊。)
方案二:
捐款
李彤任一
黃娜
董澤
張陽
捐物
孟濤
吳越
張恒
張旭
師:哇!你們的擺法很獨特,說說你們這樣擺有什么好處?
生:因為有兩個李彤和任一,我們取下來一個李彤和任一,將剩下的李彤和任一放在中間,既表示捐款的人,又表示捐物的人,這樣,很清楚的看出一共有9人。
師:你們組的擺法真的很有創意,他們組的擺法你滿意嗎?(生生評價)授予你們小組為“勇于創新小組”。同學們,掌聲鼓勵。
設計意圖:培養學生的觀察能力、分析能力、交流合作能力以及創新能力。積發學生的想象力,拓展學生的思維。
(課堂生成:如果學生沒有想到這個方案,可以啟發:當你和爸爸、媽媽上街的時候,你既想牽爸爸的手,又想牽媽媽的手,你應該走到什么位置?那么,同樣的道理,李彤和任一這兩個同學既捐了款又捐了物,他們應該放到什么位置?)
2.圈一圈。
師:請同學們觀察這張調整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分別把它們圈出來嗎?
設計意圖:(不同顏色的粉筆圈出來更明顯)為韋恩圖的形成奠定基礎。
3.探究韋恩圖
師:為了讓大家看的更清楚、更直觀,請看大屏幕:
(1)取消表格。
表示捐款和捐物的人名單我們已經用線圈起來了,底下的表格已經沒有用了,可以將它取消。
(2)捐款的移到左邊,捐物的移到右邊。
(3)線條歪歪曲曲的,將它畫好就更美觀了。(課件出現韋恩圖)
設計意圖:感受韋恩圖的形成過程,讓學生親身經歷知識的形成過程。
(4)介紹韋恩圖。
師:在很久以前,就有人給它起了個名字,叫韋恩圖。(出現韋恩圖三個字)你們知道為什么把它稱作韋恩圖嗎?因為這是英國著名的數學家韋恩在19世紀發明的,后來,就把這樣的圖叫韋恩圖,也叫集合圖。今天,我們就一起探究有關集合的知識《數學廣角》——集合。(板書課題)
設計意圖:介紹課外知識,拓寬知識視野。
師:同學們,我們通過自主探究、動手操作、小組討論,將一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,經過旋轉演變后,轉化成這副既科學合理又形象直觀的韋恩圖,你們真的很了不起!師:請大家仔細觀察大屏幕,回答老師的提問。
4.列式計算。
(1)課件分別出示韋恩圖的五個部分,學生分別說出每部分所表示的含義,課件一一呈現數學信息。
師:同學們看懂韋恩圖了,也真正領悟到了每部分所表示的含義,并且,從中發現了這么多的數學信息,現在,你能計算出捐款和捐物的一共有多少人嗎?請同學們獨立解答。
(2)計算板演。
方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(貼答數)
討論:為什么要減2?(因為有2個人既捐款又捐物)
方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)
設計意圖:發展學生思維,體現方法多樣化。
三、實踐應用,鞏固內化
師:同學們,通過剛才的學習,我們學會了許多知識和本領,其實,利用韋恩圖可以幫我們解決生活中的許多問題,我們來看看:
1.舉一反三(4道搶答題)
4.思維訓練
三年級有10名同學參加競賽,其中,參加數學競賽的有5人,參加作文競賽的有6人。
(1)既參加數學競賽又參加作文競賽的有幾人?
(2)只參加數學競賽的有幾人?
(3)只參加作文競賽的有幾人?
設計意圖:有梯度的練習題有利于不同層次的學生均有收獲。舉一反三搶答題強調重點,內化知識;思維訓練題求重疊部分,培養學生的逆向思維,培養學生靈活運用知識解決問題的能力。
四、總結質疑,自我提高
1.學生說這節課的收獲并質疑
2.互相評價、共同提高(自評互評生評師師評生)
師:同學們,你們課堂上,善于觀察、認真思考、踴躍發言、敢于創新。表現得非常出色!通過自主探究、小組交流學到了很多關于集合的知識,下面,有請獲得紅花和紅星獎勵的小朋友上臺。紅花站左邊、紅星站右邊。
引發沖突:兩種都有的學生應該站哪?(中間)請觀察這一排同學,回答問題:
1.獲得紅花獎勵的指哪些同學?
2.獲得紅星獎勵的指哪些同學?
3.既獲得紅花獎勵又獲得紅星獎勵的指哪些同學?
4.只獲得紅花獎勵的指哪些同學?
5.只獲得紅星獎勵的指哪些同學?
6.獲得紅花獎勵和紅星獎勵的一共有多少人?
設計意圖:內化集合知識;實現評價方法的多元化和評價方式的多樣化;滲透養成良好學習習慣的思想教育。
五、作業布置,知識升華
我是小小設計師。(課后作業)
請以講臺前獲得紅花獎勵和紅星獎勵的學生人數為題材,用今天所學到的知識,設計一個集合圖。大膽嘗試吧!只要我們能在知識的海洋里成風破浪、歷練出一身好本領,一定會設計并創造出一個屬于自己的精彩人生!
設計意圖:給學生一個開放的空間,以講臺前獲得紅花獎勵和紅星獎勵的學生人數為題材,用今天所學到的知識,讓學生自主探索,自己設計出集合圖。充分地利用韋恩圖,讓他們明白韋恩圖在平時生活中也是非常有用,同時,培養了學生的創造能力。
六、板書設計,凸顯重點(體現學生的主體地位)
高一數學第一章《集合》教案 篇六
一、教材分析:
“滲透集合知識”是人教版《義務教育課程試驗教科書數學》三年級下冊第九單元《數學廣角》第一課時的教學內容。小學生從一開始學習數學,就已經在運用集合的思想方法了。例如,學生在一年級學習數數時,把1個人、2朵花、3枝鉛筆等等用一條封閉的曲線圈起來表示,這樣表示的數學概念更直觀、形象,給學生留下的印象更深刻。又如,我們學習過的分類實際上就是集合理論的基礎。本節課教學的例1是借助學生熟悉的題材,滲透集合的思想,并利用直觀圖的方式求出兩個小組的總人數。在教學例1時,我注重了三個方面的問題。
(1)集合的理解。
(2)有關計算。
(3)拓展延伸。基于以上的安排,結合新課程標準,我確定了本節課的教學目標:
二、教學內容:
教材第108頁例1,練習二十四弟1、2題。
三、教學目標:
(1)知識與技能:同學們能夠借助直觀圖,初步利用集合的思想方法去解決簡單的問題。
(2)過程與方法:使學生能借助具體內容,利用集合的思想方法去解決問題。
(3)情感態度與價值觀:培養學生觀察思考問題的能力。
四、重難點
重點:初步體會集合的思想方法。 難點:用集合直觀圖來表示事物。
五、教法學法
教法:。情景演示與引導學習相結合。情景的演示激發學生興趣,讓學生進入到最佳學習狀態。學生在老師的引領下,自主學習、觀察、思考、交流、討論和概括,從而完成本節課的教學目標。
學法:自主探究與合作學習相結合。2.補救法,在授課中有意將學生導入誤區,最后學生用學到的知識判斷并改正,這樣做有利于學生的計算,一定得減去重復的個數。
六、教學準備:課件 圖片等 七、教學流程:
《集合》教學設計 篇七
教學目標:
1、認識并會寫“矛、盾、集”等生字。能正確讀“集合、招架”等詞語。
2、學習默讀課文,正確、流利、有感情地朗讀課文。
3、理解課文內容,學習發明家勤于思考、勇于實踐的品質。
教學重難點:
重點:理解課文內容,學習發明家勤于思考、勇于實踐的品質。
難點:讓學生懂得“誰善于把人的長處集于一身,誰就會是勝利者。”這句話的含義。
課前準備:
多媒體課件。
教學時間:一課時。
教學過程:
一、引
1、能夠和大家一起學習我很高興!初次見面,給大家帶來一件禮物,這件禮物是老師精心準備的,大家請看屏幕:
幻燈出示:
“誰善于把別人的長處集于一身,誰就會是勝利者。”
2、這句話是老師送給大家的禮物!誰愿意收下它?讀讀看。要想真的理解這句話的含義,讀懂老師的心,咱們還要把今天要學習的課文好好讀一讀。伸出手,和老師一起來書寫課題。(指導書寫矛和盾。)
二、讀
1、請同學們打開書,放聲讀課文,讓老師聽到你的讀書的聲音好嗎?如果遇到生字、生詞怎么辦?(指名回答識讀生字詞的方法。)大家開始吧。
2、剛才同學們讀得非常專心!誰來讀一讀屏幕上的生字詞?
幻燈出示
集 合 難以招架 固然 烏龜 自衛 合二為一 大顯神威
長 處 勝利者
3、誰來讀?(師可以根據學生識讀情況鼓勵、正音,如:聲音響亮,口齒清晰;聽聽別人怎么讀?再試試看!等。)
三、悟
1、接下來,咱們換一種讀書方法,默讀課文。如果大家能夠潛心地默讀,一定會有許多的收獲!(生默讀課文,師巡視參與其中。)
2、讀完課文后,誰嘗試根據屏幕上的提綱說一說發明家是怎樣一步一步思考的:
發明家忽然產生了一個想法:_____________________
發明家仔細考慮了一下:可是,_____________________
發明家又認真研究了一番:對了,_____________________。
(師根據學生回答,可以激勵:很會讀書!善于在別人總結的基礎上概括!這就是合二為一。等等。)
四、品
1、會學習的孩子善于發現!在緊張危急的關頭,發明家忽然產生了一個想法是:
幻燈出示:
“盾太小啦!如果盾大得像個鐵屋子,我鉆在鐵屋子里,敵人就一槍也戳不到我啦!”
2、讀讀看。為什么這樣讀?你有什么發現?(第一個“!”表示對盾的不滿、埋怨。第二個“!”欣喜、高興。)
3、請大家帶著感情齊聲朗讀。
五、拓
1、課文學習到此時,我們再回過頭來看看老師為大家精心準備的禮物:
幻燈出示:
“誰善于把別人的長處集于一身,誰就會是勝利者。”
2、誰能理解老師的用心,誰就能用一個成語概括一下這句富有哲理的話!誰就會收下這份不一般的禮物!(師板書:合二為一、取長補短。)
3、能否用上“取長補短”造句?試試看!
六、結
這句話不好理解;這句話卻很受用,這句話很貴重,它給人以啟發。我想你們已經收下這個珍貴的禮物了。大家齊讀該句。同學們,老師希望你們能夠把這份珍貴的禮物送給你的朋友,送給需要的人,好嗎?
板書設計:矛和盾的集合
合二為一、取長補短
集合的基本運算教學設計 篇八
一。教學目標:
1、知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集。
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
(3)能使用Venn圖表達集合的運算,體會直觀圖示對理解抽象概念的作用。
2、過程與方法
學生通過觀察和類比,借助Venn圖理解集合的基本運算。
3、情感。態度與價值觀
(1)進一步樹立數形結合的思想。
(2)進一步體會類比的作用。
(3)感受集合作為一種語言,在表示數學內容時的簡潔和準確。
二。教學重點。難點
重點:交集與并集,全集與補集的概念。
難點:理解交集與并集的概念。符號之間的區別與聯系.
三。學法與教學用具
1、學法:學生借助Venn圖,通過觀察。類比。思考。交流和討論等,理解集合的基本運算。
2、教學用具:投影儀。
四。教學思路
(一)創設情景,揭示課題
問題1:我們知道,實數有加法運算。類比實數的加法運算,集合是否也可以“相加”呢?
請同學們考察下列各個集合,你能說出集合C與集合A.B之間的關系嗎?
引導學生通過觀察,類比。思考和交流,得出結論。教師強調集合也有運算,這就是我們本節課所要學習的內容。
(二)研探新知
l.并集
—般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集。
記作:A∪B.
讀作:A并B.
其含義用符號表示為:
用Venn圖表示如下:
請同學們用并集運算符號表示問題1中A,B,C三者之間的關系。
練習。檢查和反饋
(1)設A={4,5,6,8),B={3,5,7,8),求A∪B.
(2)設集合
讓學生獨立完成后,教師通過檢查,進行反饋,并強調:
(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現一次。
(2)對于表示不等式解集的集合的運算,可借助數軸解題。
2、交集
(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?
請同學們考察下面的問題,集合A.B與集合C之間有什么關系?
②B={|是新華中學2004年9月入學的高一年級同學},C={|是新華中學2004年9月入學的高一年級女同學}。
教師組織學生思考。討論和交流,得出結論,從而得出交集的定義;
一般地,由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集。
記作:A∩B.
讀作:A交B
其含義用符號表示為:
接著教師要求學生用Venn圖表示交集運算。
(2)練習。檢查和反饋
①設平面內直線上點的集合為,直線上點的集合為,試用集合的運算表示的位置關系。
②學校里開運動會,設A={|是參加一百米跑的同學},B={|是參加二百米跑的同學},C={|是參加四百米跑的同學},學校規定,在上述比賽中,每個同學最多只能參加兩項比賽,請你用集合的運算說明這項規定,并解釋集合運算A∩B與A∩C的含義。
學生獨立練習,教師檢查,作個別指導。并對學生中存在的問題進行反饋和糾正。
(三)學生自主學習,閱讀理解
1.教師引導學生閱讀教材第10~11頁中有關補集的內容,并思考回答下例問題:
(1)什么叫全集?
(2)補集的含義是什么?用符號如何表示它的含義?用Venn圖又表示?
(3)已知集合。
(4)設S={|是至少有一組對邊平行的四邊形},A={|是平行四邊形},B={|是菱形},C={|是矩形},求。
在學生閱讀。思考的過程中,教師作個別指導,待學生經過閱讀和思考完后,請學生回答上述問題,并及時給予評價。
(四)歸納整理,整體認識
1.通過對集合的學習,同學對集合這種語言有什么感受?
2.并集。交集和補集這三種集合運算有什么區別?
(五)作業
1.課外思考:對于集合的基本運算,你能得出哪些運算規律?
2.請你舉出現實生活中的一個實例,并說明其并集。交集和補集的現實含義。
3.書面作業:教材第12頁習題1.1A組第7題和B組第4題。
本文由用戶feng分享,如有侵權請聯系。如若轉載,請注明出處:http://www.qingqu1.cn/21240.html